
Leopold–Franzens–Universität
Innsbruck

Institute for Computer Science
Research Group Quality Engineering

Human-readable Names for Tor Hidden Services

Bachelor Thesis

(SS2011)

Supervisor: Matthias Gander

Simon Nicolussi

September 20, 2011

Contents

1 Introduction 4

1.1 The Onion Router . 4

1.1.1 Hidden Services . 6

2 Problem Analysis 10

2.1 Current Addressing Scheme 10

2.2 Zooko’s Triangle . 12

2.3 Finding a Middle Ground . 13

2.3.1 Petnames . 13

2.3.2 Word Lists . 14

2.3.3 Further Enhancements 17

2.3.4 Nakanames . 20

2.4 Conclusion . 21

3 Specification 22

3.1 Use Cases . 22

3.1.1 Calling a hidden service with a memorable URL 22

3.1.2 Calling a hidden service with an old-fashioned URL . . 23

3.1.3 Generating a memorable URL to a hidden service . . . 23

3.1.4 Setting up a new hidden service in the Tor network . . 24

4 Implementation 26

4.1 Current Implementation . 26

4.2 Unit Tests . 27

4.3 Basic Lookup Functionality 27

4.4 Creation of URLs . 29

4.5 Key Stretching . 31

4.6 Evaluation . 32

5 Conclusion 34

A Nick Mathewsons Email 36

2

Abstract

Hidden services in the Tor network are an easy way to make a ser-

vice available to unascertainable users while concealing the operator’s

identity at the same time. Unfortunately the method for addressing

an individual service is quite rudimentary and has never been revised

since the functionality became available in 2004. This thesis describes

the related problems and researches possible solutions with special

attention on their applicability to the Tor network. The resulting in-

sights suggest that a slight modification of Paul Crowley’s word lists is

currently the best bet for providing a robust and user friendly mech-

anism to address hidden services. The solution is then implemented

with special consideration of secure coding principles and proper qual-

ity assurance.

3

1 Introduction

This thesis is concerned with finding an alternative naming system to the

simplistic scheme that is currently in use. In order to understand the pros and

cons of the different approaches to the problem, it is necessary to have a quite

detailed understanding of the way Tor is operating. The technical diagrams

in this section are modified versions of the ones found at the Tor Project’s

website in the overview section1 and the hidden service documentation.2

1.1 The Onion Router

Tor 3 is the name of both a software and a network that tries to conceal the

identity of its users on the Internet. There are numerous contenders that

try to achieve the same goal, Tor’s differentiating characteristic, however, is

that it tries to defend against fairly powerful adversaries like for example

ISPs and even governmental institutions. Simple anonymizing proxies (e.g.

VPNs) consisting of a single hop are frequently good enough to conceal the

location of the user at hand from the visited service, but fail trivially if the

ISP of the proxy is malignant.

At the same time Tor is intended to be used as a low-latency network

nonetheless, where interactive uses like real-time chat or Web are possible

without a prohibitive speed penalty. As a matter of fact this premise implies

that Tor cannot protect against global observers. Such an adversary would be

able to watch the traffic flow in and out of the network and can then correlate

the streams by timing attacks. There are high-latency networks that try to

defend against global observers by introducing delays when relaying data,

Tor on the other hand tries to defend against global observers by preventing

them (e.g. by making the network as heterogeneous as possible).

Tor’s key principle is Onion Routing. The basic idea is straightforward:

there is a large number of Onion Routers (ORs) that act as nodes in the Tor

network. Their duty is to relay the traffic of the Onion Proxies (OPs), client

1https://www.torproject.org/about/overview.html
2https://www.torproject.org/docs/hidden-services.html
3https://www.torproject.org/

4

Figure 1: Alice’s OP obtains a list from a directory server. The pluses
symbolize ORs commonly run by volunteers.

software installed on the computers of the users.

Each OP knows the public keys of each OR in the network (Fig. 1). With

these keys the OP can build a circuit through the network, i.e. a chain of

(currently three) ORs chosen at random (with keys k1, k2, . . . , kn). If the

user wants to relay traffic over Tor, the OP groups the data from the TCP-

stream into cells of 512 bytes. Each cell is then supplemented with routing

information (r1, r2, . . . , rn) for getting to the next OR and subsequently

encrypted with the corresponding public keys:

E(k1, E(k2, . . . E(kn, payload|rn) . . . |r2)|r1)

This “onion” can then be sent over the circuit. Each OR in the circuit

can only decrypt the layer encrypted with its public key and only the last

OR will see the payload itself (Fig. 2). The routing information is shared on

a strict need-to-know basis: each OR only knows about its direct predecessor

and its direct successor. This way the anonymity of the user is protected if

at least one OR in the chosen circuit is non-malignant (assuming there is no

global observer, of course).

This sketchy description of Tor’s operation should suffice for now, the

actual mechanisms are far more complicated but not of interest for the re-

mainder of this work.

5

Figure 2: Alice’s OP picks a random path to Bob’s OP. Green links are
encrypted, red links are in the clear. The last link is generally unencrypted.

1.1.1 Hidden Services

Services that are not only accessed by means of the Tor network, but re-

side inside the Tor network itself, are called location-hidden services or, in

short, hidden services. Residing in the Tor network itself has a number of

advantages for the operator of said services, the most important of which is

responder anonymity. The central point of responder anonymity is that not

only the user but also the operator of a service benefits from the protections

the Tor network provides.

In ideal circumstances it should be impossible for an adversary to deter-

mine:

• where a hidden service is located geographically,

• who operates the hidden service,

• by whom the hidden service is being used,

and, thanks to end-to-end-encryption,

6

• any communication between user and service is protected.

To set up a hidden service, the operator (say Bob) has to run an OP

and an application specific server software (i.e. nginx 4 for HTTP). The OP

generates a public key and randomly chooses three introduction points from

the ORs in the network. A structure containing this data (amongst other)

is then signed and uploaded to a distributed hash table (DHT). A circuit to

each introduction point is built (Fig. 3).

Figure 3: Bob’s OP connects to three introduction points and uploads a
descriptor to a database (in reality a DHT). Note that the green links are
Tor circuits in this context, not direct connections.

A client (say Alice) that wants to visit Bob’s hidden service has to down-

load the structure from the DHT. At the same time Alice’s OP chooses a

rendezvous point (RP) by chance from the ORs in the network.

A randomly generated rendezvous cookie is combined with the RP and

encrypted with the service’s public key. Then the OP connects to one of the

introduction points and sends the encrypted packet to Bob’s OP (Fig. 4).

Now only Bob and Alice know about the rendezvous cookie and the RP.

Their OPs build a circuit there and the two connections can be joined under

consideration of the rendezvous cookie. Alice and Bob are now connected to

each other and their applications can exchange data as via any other TCP

connection (Fig. 5).

The biggest disadvantage of hidden services is the penalty in terms of

speed. Another problem is the addressing of hidden services. It is of course

4http://nginx.net/

7

Figure 4: Alice’s OP fetches the corresponding descriptor from the DHT and
chooses a RP. The rendezvous cookie and RP are sent to Bob’s OP over one
of its introduction points.

Figure 5: Alice’s and Bob’s OPs meet at the RP and confirm each others
identity with the rendezvous cookie. They proceed to use their circuits like
in regular operation.

not possible to address them like a conventional service in standard TCP/IP,

as the IP address must remain concealed at all times. The currently used sys-

tem uses public keys generated by the hidden service in question to establish

a connection over the Tor network.

Unfortunately public keys are currently 128 bytes in length (as visible

in the Tor source code) and thus unsuitable to be used by humans in any

intuitive way. Instead, the public key is transformed to an Onion URL

consisting of 16 alphanumerical symbols and the TLD look-alike .onion is

appended to it. An identifier constructed this way can be used just like any

URL, provided the user routes his traffic concerning the identifier over an OP.

An example of a hidden service URL would be duskgytldkxiuqc6.onion.

URLs like these are better than plain public keys in terms of usability,

8

but they are still a long shot to being as natural as URLs on the regular

Internet are. They could also be considered to be a security risk, since an

attacker could generate a similar URL and publish it while maintaining the

impression that it is associated with the site to be impersonated. Most users

wouldn’t realize that the URL duskgyii4e77trop6.onion is different from

the one we presented above, for example. The price of this mimicry was a

few minutes of brute-force computations with Shallot5 on a standard laptop

for finding an appropriate public key.

The stated goal of this work is to provide a robust system that is more

usable and at the same time at least as secure as the currently deployed

mechanisms. Even though it looks like a purely cosmetic change, it could

have considerable impact on the usage of hidden services among non-technical

people, and that in turn makes Tor more secure for all of its users [1].

Furthermore an important aspect is adaptability to various changes in the

future; the system should scale reasonably well with the anticipated increases

in processing power and contingent structural changes to the Tor network,

as for example introduction of elliptic curve cryptography and even longer

public keys.

5https://github.com/torzeljko/Shallot/

9

2 Problem Analysis

The problem at its heart is naming a set of numerical values (the identifiers of

the hidden services) in a way that is intrinsically meaningful to the average

user. From this perspective the problem doesn’t seem all that hard, as it

already has been solved numerous times, with the Domain Name System

(DNS) [2] probably being the most prominent solution.

Unfortunately, it is not that easy. Despite DNS being a distributed sys-

tem, it still maintains a hierarchical structure, with the root (albeit consisting

of multiple servers) being a central authority. In other words: should the op-

erators of the authoritative root ever decide (or be coerced) to manipulate

the system in any illegitimate way, there is little to defend against it, short of

starting an alternative root. One example of such an attack was the “seizure”

of numerous domain names in 2011 by the FBI [3], although the action was

limited to the .com TLD instead of the whole DNS root [4].

2.1 Current Addressing Scheme

The current addressing system is described in the Tor Rendezvous Specifi-

cation [5] and is rather simplistic. In order to set up a hidden service, the

operator’s OP has to generate a private/public pair of keys. The public key k

is then combined with other pieces of information (like the later introduction

points) to a data structure called service descriptor. There are two versions

of service descriptors, V0 and V2, but we will ignore the former as it isn’t

supported anymore.

Among the data contained in a V2 service descriptor is a permanent ID

that can be computed by calculating the SHA-1 digest H(k) of the public

key and truncating it after 80 bits or 10 bytes:

permanent ID = H(k)[: 10]

Now the Onion URL can be obtained trivially by appending the string

“.onion” to the Base32 encoding of such a permanent ID. Truncating H(k)

after 80 bits implies that half of the hash’s output is being wasted, as SHA-1

10

produces a 160-bit digest. This is done to keep the URLs at a convenient

length, currently at 16 alphanumeric characters (plus 6 characters for the

pseudo-TLD). The permanent ID is also called service ID in the implemen-

tation, where it is used in both the “raw” and the Base32 encoded form.

Furthermore a service descriptor contains a descriptor ID that is calcu-

lated by concatenating the permanent ID with a secret ID part and hashing

the result. The secret ID part in turn is calculated by hashing the con-

catenation of the time period (a periodically changing function of time and

permanent ID), an optional descriptor cookie that is only shared with trusted

clients, and a replica number:

descriptor ID = H(permanent ID|secret ID part)

= H(permanent ID|H(time period|descriptor cookie|replica))

= H(H(k)[: 10]|H(time period|descriptor cookie|replica))

We aren’t concerned about the mechanics of the secret key here. The

important thing is that an OP can get to the descriptor ID by knowing just

the permanent ID alone (and possibly the descriptor cookie, if the hidden

service operator wants to limit the visitors to a certain group of trusted

users).

A V2 service descriptor is finally advertised by signing and uploading it

to a changing subset of 6 ORs (the DHT) that are chosen depending on their

IDs and the descriptor ID of the record to be uploaded.

A user wanting to access a hidden service simply enters the URL received

out-of-band. The user’s application hands the URL to the OP, which in turn

calculates the permanent ID and from that the descriptor ID. These can then

be used to download and verify the whole service descriptor. From there the

OP can build a circuit to one of the introduction points and everything that

follows (see 1.1.1).

11

2.2 Zooko’s Triangle

The first impulse now would be to devise an alternative naming system to

DNS that meets all of Tor’s needs. Unfortunately there is a conjecture that

suggests our undertaking would be fruitless: Zooko’s Triangle [6] [7].

It basically states its assertion in the title of the presenting article: “Names:

Decentralized, Secure, Human-Meaningful : Choose Two”. These three at-

tributes are exactly the ones we would like to have for our naming system:

decentralized in the sense that there are no central authorities,

secure in the sense that an attacker cannot hijack a name,

human-meaningful in the sense that an average human can pick it up from

the side of a bus driving by [7] [8].

Figure 6: Zooko’s Triangle

According to Zooko’s Triangle self-authenticating names like the currently

used Onion URLs cannot be meaningful to humans, where self-authenticating

means that the correct mapping to a name is verifiable with the name (and

only the name!) itself. They can, however, be secure and decentralized.

Non-self-authenticating names like the ones used in regular DNS, on the

other hand, cannot span trust boundaries. That basically boils down to:

they cannot be used in a secure manner by peers independently of a third

party. Therefore they are either decentralized and insecure or centralized

and secure (or neither). Another example for non-self-authenticating names

would be nicknames in IRC [9], as there is no way to stop someone from using

12

ones nickname in other networks, whereas looking at only a single network

would violate the premise of decentralization.

2.3 Finding a Middle Ground

Zooko’s triangle has shown that finding a “perfect” solution is improbable,

but it certainly doesn’t say that we cannot find a middle ground on the de-

sired attributes. Transitioning from secure and decentralized Onion URLs to

a scheme that compromises on these two attributes to gain a little human-

readability may give some people an uneasy feeling, as it implies a reduction

of security for a gain of usability, but that reduction may be of purely theo-

retical nature, as we will see.

2.3.1 Petnames

The first alternative to be considered is a so called petname system, as it is

featured prominently in Tor’s hidden service documentation.6 The concept

of petnames has initially been described in an article by Marc Stiegler that

contains an extended interpretation of Zooko’s triangle [8]. In this alternative

rendering the author adds the concept of keys, nicknames, and petnames,

each of which embody at most two of the three attributes in Zooko’s triangle:

keys are decentralized, secure and never human meaningful,

nicknames are decentralized, human-meaningful and never secure,

petnames are secure, human-meaningful and never decentralized.

In the proposed system, each petname has to provide a bidirectional

one-to-one mapping to a key, whereas a nickname only provides a mere one-

to-many mapping to a key. The role of the “central” authority that manages

the mapping between petnames and keys would then be assumed by the

respective user of the system.

An example implementation of a petname system could be used to defend

against phishing. For the sake of the argument assume a DNS domain name

6https://www.torproject.org/docs/hidden-services.html.en

13

to be some sort of nickname. The insecure aspect of domain names would

be their vulnerability to mimicry (as in examp1e.com). If Alice now receives

a link to Bob’s website out-of-band, she has to decide whether to trust the

link each time she sees it. Phishers are taking advantage of Alice’s obligation

to stay alert at all times.

Assuming the use of petnames Alice would only need to trust Bob once.

The mapping between petname and key (e.g. “Bob’s site” ↔ example.com)

is then saved and Alice could navigate from petname to domain name and

the other way around in the future. If she ever follows a link to a bogus

domain name instead of Bob’s, she would (hopefully) notice that the site she

landed on is not associated to the petname she expected to see.

The bookmark system that is currently used by most web browsers is

related but weaker than the proposed petname system: a bookmark is not a

bidirectional mapping, it can only be navigated in one direction (e.g. “Bob’s

site” → example.com) and is therefore called lambda name instead of pet-

name.

Stiegler also asserts that a petname system as a whole embodies all the

attributes of Zooko’s triangle. Such a system has a serious drawback, how-

ever: petnames are strictly non-global, or, in Marc Stiegler’s words: “The

security properties of a petname come from its privacy.” [8]

Another issue is that of application dependence. While it would be con-

venient to modify an existing petname plug-in for the Firefox browser, this

would only be of advantage for a tiny set of protocols. Tor on the other hand

aims to be an application agnostic tool for all TCP streams [10].

2.3.2 Word Lists

In search for a better solution Paul Crowley has written a two-parts essay

that illustrate the use of word lists for a naming system [11]. There the author

argues that Zooko’s Triangle is actually a tetrahedron with four attributes

instead of three, with three of four being achievable, the fourth attribute

being:

transferable in the sense that the name can be transferred across a trust

14

boundary while preserving its meaning.

This property is assumed to be so central to most authors that it is not

even mentioned most of the time (as for example in Zooko’s original arti-

cle). One notable exception is Stiegler’s petname system (described above):

such a system attains all attributes from Zooko’s triangle but has to give

up on transferability instead, with the consequence that petnames cannot be

shared.

Figure 7: Zooko’s Triangle with a fourth attribute in the third dimension

This alternative proposition aims for all properties, on the other hand.

The underlying address mode of the system builds on distributed and secure

keys, not unlike the currently used permanent IDs. Instead of exposing the

user to a cryptographic key, however, each key k is mapped to a list of words

from a given dictionary.

In the original essay this is achieved by hashing the key k and grouping

the bits of the hash H(k) in such a way that the resulting numbers can be

used as indices to words in a predefined (and globally shared) dictionary. A

156-bit hash (as a general example with no direct relation to Tor) could be

mapped to 12 words out of a dictionary of 8192 words in total. Domain names

consisting of 12 words are still a far shot from being usable, but friendlier

than the “naked” key at least (Fig. 8).

The author further elaborates on forcing the creator of a name to devote

computational power on solving a challenge, a technique commonly known

as key stretching. An example for such a challenge would be to find a 32-bit

nonce n with a resulting hash H(k, n) that ends in 23 zeroes. The first 65 bits

of the hash could then be grouped into units of 13 bits that index 5 words

15

b155 . . . b143︸ ︷︷ ︸
dict[5924] = “slay”

dict[5922] = “silo”︷ ︸︸ ︷
b142 . . . b130 b129 . . . b117︸ ︷︷ ︸

dict[0001] = “aaron”

. . . = H(k)

Figure 8: Barely memorable names with 3 of 12 words shown.

in a dictionary just like before. An attacker that wants to hijack a specific

domain would still need to find one specific value in 288. The downside of

this approach is that the creation of a name takes a few seconds of brute

forcing on a typical computer, whereas lookup and validation should happen

instantaneously.

Another enhancement mitigates birthday-attacks that are targeting a

large number of names (e.g. all of them, in the case of vandalism). The

problem is that the probability for a successful attack on an arbitrary name

out of many could be substantially higher than the probability presented

above. The proposed solution would be to include a handle h to the hash

H(h, k, n) that is used in the same manner as above. The handler could be

chosen freely (within reasonable bounds, like domain names in DNS). Large

scale attacks could be prevented this way and furthermore the handler would

act as a user friendly denomination for specific hidden services (Fig. 9).

b155 . . . b143︸ ︷︷ ︸
dict[5924] = “slay”

dict[5922] = “silo”︷ ︸︸ ︷
b142 . . . b130 b129 . . . b117︸ ︷︷ ︸

dict[0001] = “aaron”

. . .

arbitrary︷ ︸︸ ︷
b90 . . . b23 b22 . . . b0︸ ︷︷ ︸

0

= H(h, k, n)

Figure 9: Simpler names with 3 of 5 words shown. The dictionary is the
same as before.

One disadvantage of the word list approach in general is that the names

still aren’t as intuitive as the regular domain names. What has been dubbed

human meaningful by Zooko is called readable or memorable by other au-

thors; word lists surely qualify for being readable and somewhat memorable,

but they are (arguably) meaningless.

16

2.3.3 Further Enhancements

Crowley’s approach looks promising so far, but how does it fit into the ex-

isting picture? A URL of the proposed type would have to be resolved to

provide the public key k and a nonce n, assuming the handle h is part of the

URL received out-of-band. After that, the client could verify whether the

returned information met all the constraints described above (namely that

H(h, k, n) could be broken up into the word list in the URL and that it ends

in a certain predefined number of zeroes).

Unfortunately the already implemented lookup mechanism in Tor uses

descriptor IDs (though these can be derived from the permanent ID which in

turn can be derived from the public key k). Now there is no (known) way to

derive the public key k from the hash H(h, k, n), the same holds for the nonce

n. We would have to reimplement the lookup mechanism of Tor, so the OP

can look up k and n with H(h, k, n) alone. After receiving this information,

the OP would verify whether the answer was plausible and proceed by using

the descriptor ID (derivable from the public key k) to download the service

descriptor like in the old system.

Even if we could combine the first and second lookup in some way, the

service descriptor would have to include the nonce n somewhere. Changing

the format of the service descriptor (to V3) has to include a modification

of the Tor Rendezvous Specification [5], a potentially complex and time-

consuming process [12]. It would be much better if the changes necessary

could be confined to the client side only.

A first step in that direction would be to eliminate the hashing of h, k and

n. Since we are using a derivative of H(k) for actually fetching the service

descriptors, we might as well use (some of) the bits in that digest as the

indices to words in the dictionary. One problem with this is that there are

plans to increase the length of the public keys in the future.

Current proposals seem to be in favour of increasing the length of the

permanent ID too (for example by taking the whole SHA-1 digest instead of

the first half) [13]. Of course this would lead to word lists too long to be

deemed acceptable. The problem could be prevented by leaving the definition

17

of the permanent ID as it is (i.e. at a length of 10 bytes) when increasing

the length of the public keys.

The only part of the system that is getting weaker (or more precisely:

not gaining strength) would be the part where the client validates whether

it received the correct service descriptor. Fortunately we have already seen

what to do to make brute-force attacks against the word list URLs harder:

key stretching. Securing old-style URLs is not an issue, the client can always

ensure it received a legit descriptor by checking whether the received public

key matches the permanent ID in the entered URL.

The other problem is the nonce: it is unfeasible to include it in the service

descriptor (as this requires the introduction of a new descriptor version in the

Rendezvous Specification [5]). Therefore we would have to include it in the

URL to be transmitted out-of-band. On the other hand, that would make

the URL longer than desirable. It would be neater if the client could validate

the key stretching step without any external factors, other than the URL.

We could just leave the nonce out of the game entirely, and only require

the hash H(h, k) to end in a certain number of zeroes. When an operator

generates a URL, instead of varying a nonce, the OP varies the public key.

Of course generating a key is much slower than varying a nonce, but we are

in the lucky position to decide the number of bits we require to be zero.

Still, (ab)using the public key itself as the nonce is a risky endeavor. For

one, existing implementations are never optimized for the creation of public

keys. This means one would never know the orders of magnitude attackers

are faster in creating keys than the regular users with their unoptimized key

generators. Deciding on the “right” number of required zeroes will be a hard

task, as a number too high would hamper the legitimate users, whereas a

number too low would increase the attack surface.

One enhancement to Crowley’s original proposal has been brought for-

ward by Nick Mathewson in private correspondence (see appendix). In our

current solution we would take the position of a word in a fixed directory

to represent a part of the hash H(k). Or, in the other direction, a group

of bits in the hash H(k) are interpreted as an index in the directory. The

disadvantage is that the dictionary has to be the same for all users and is

18

practically impossible to modify after deployment, since each entry after an

added or deleted word would change its position and thus its encoding in

this scheme.

Mathewson’s idea was to take the first few bits of the hashes of arbitrary

words instead of their position for the same purpose (Fig. 10). This way

there is no need to manage a dictionary (and even then it would be a lot

easier, because it can be modified without changing the encoding of the

words). Another advantage is that it is not language specific. The users

could easily generate URLs in their own native language. One disadvantage

would be that accepting arbitrary words could make them easily mimicked

(for example by swapping characters in the middle of the word, a mistake

easily overlooked by the human eye). Software to create deceptive imitations

for SSH public keys already exists [14].

b64 . . . b52︸ ︷︷ ︸
dict[72c116] = “shells”

dict[d02216] = “grassy”︷ ︸︸ ︷
b51 . . . b39 b38 . . . b26︸ ︷︷ ︸

dict[e15816] = “rot”

dict[981516] = “fives”︷ ︸︸ ︷
b25 . . . b13 b12 . . . b0︸ ︷︷ ︸

dict[00e116] = “pardon”

= H(k)

under the condition that

arbitrary︷ ︸︸ ︷
b64 . . . b23 b22 . . . b0︸ ︷︷ ︸

0

= H(h, k)

Figure 10: The final proposal. Note that the dictionary is not sorted al-
phabetically like before, but sorted with respect to the first 2 bytes of each
word’s hash digest.

A middle ground between a direct index and the hash approach could

prove to be the most practical: There could be a dictionary (for different

languages nonetheless), but the hashes of these words would be mapped to

the groups of bits. That way we would retain the meaning of a word list

even if the dictionary is changed in some way (e.g. by removing or inserting

words) while preventing most name mimicry at the same time.

An experiment carried out by Mathewson (see appendix) suggests that

over 98 percent of all 256-bit keys are representable with 16 English words

(i.e. taking the first two bytes from the beginning of the hash). If the

19

generated key fails to produce any encoding, we could simply regenerate it,

as we are already doing at the key stretching step presented above.

2.3.4 Nakanames

The most recent potential solution was proposed by Aaron Swartz in an essay

from 2011 [15], the term Nakanames has been introduced in the FAQ to the

essay [16]. It is named after Satoshi Nakamoto, the inventor of Bitcoin,7 a

virtual currency system that makes use of a very similar method.

The basic idea is to have a scroll S that can only be appended to. The

scroll would consist of tuples (h, k, n) containing a name h, the associated

key k and a nonce n. The whole scroll is then hashed from the beginning to

the end; for the scroll to be valid, a certain number m of bits at the beginning

of the hash H(S) would have to be zero.

The scroll S would be distributed to a number of directory servers, in

Tor’s case either the directory authority or all the ORs. If there is more than

one scroll, the longest is considered to be the authoritative one.

With this system, an operator would first download the authoritative

scroll. Knowing that the authoritative scroll is valid, the operator would then

try to find a nonce n such that the scroll S with an added tuple (h, k, n) still

fulfills the requirement that there are m zeroes at the beginning of H(S) with

(h, k, n) ∈ S where h is the operator’s desired name and k is the key pointing

to the associated service. The tuple is then distributed to the directory

servers.

An attacker who wants to hijack a name would have to fabricate a scroll

that is longer than the authoritative scroll. For the names in the scroll

to remain valid, new nonces must be found for each tuple that has been

appended since inclusion of the target. Depending on the age of the entry,

this makes forging of domain names unpractical.

One big disadvantage of this approach is that names, once assigned, are

immutable. If a hidden service loses a secret key for some reason, it cannot

reclaim the domain after restoring operation. Of course this would be equally

7http://www.bitcoin.org/

20

true with the former propositions (but not with DNS) where this caveat

is obvious, however. Then there are issues with preventing vandalism: a

primitive DoS attack on this system would involve the creation of a large

number of names. The scroll would grow dramatically and could never be

shrunk back to a manageable size without collaboration from each and every

directory server.

There are other criticism of the system [17] that lead to a discussion with

the original author, where he states that his essay is to be seen as a proof

of concept, not a specification for an implementation. A similar sentiment

is evident in the FAQ where he states (on the question of downloading a 16

GB scroll on lookup): “By the time this system gets implemented, I suspect

people will have plenty of bandwidth and space.” [16]

We won’t elaborate further on the criticisms mentioned above, as the

assessment of the original author outweighs the advantages of the concept:

there is much more research required to evaluate the real-world security and

Tor is not the place to do this, as reaffirmed in Tor’s design goals: “adding

unproven techniques to the design threatens deployability, readability, and

ease of security analysis.” [10]

Namecoin8 is an experimental name system based on Bitcoin and similar

to Nakanames, albeit not targeted at Tor hidden services.

2.4 Conclusion

All in all Crowley’s word list approach seems to be the safest bet for the time

being. This decision has been reconfirmed by the Tor developers in private

correspondence. Nakanames look promising too, but require substantial re-

search before they can be put to the test responsibly in a productive system.

Petnames, in contrast, solve a problem other than the one we are concerned

with here. This certainly doesn’t mean that they don’t have their place: now

that the Tor developers have disclosed plans to produce a fork of Firefox [18],

a dedicated petname plug-in could complement the work presented in this

thesis.

8https://github.com/vinced/namecoin

21

3 Specification

In this chapter some principal design decisions are outlined.

3.1 Use Cases

As the system to be implemented is mostly exposed to the users (both op-

erators and mere “consumers”, dubbed visitors below), we are in the lucky

position to describe most desired properties with use cases.

There is one important aspect that cannot be described properly by a

use case, though: the system has to be easily modifiable to accommodate

defenses against future brute force attacks that are made possible by the

steady increase in computational power.

3.1.1 Calling a hidden service with a memorable URL

This is the most obvious use case, as it is the central point of the whole thesis.

Precondition: the actor received a URL out-of-band

Postcondition: none

1. The visitor enters a memorable URL in an application asso-

ciated with Tor

2. The derived descriptor ID is used to obtain the service de-

scriptor from selected ORs

3. The OP checks whether the digest of handle and public key

meets all the constraints explained above

4. The OP connects to the hidden service just like in the current

implementation

22

3.1.2 Calling a hidden service with an old-fashioned URL

Despite the availability of memorable Onion URLs, some users may wish to

continue using the traditional ones. Reasons might include legacy applica-

tions and existing bookmarks.

Precondition: the actor received a URL out-of-band

Postcondition: none

1. The visitor enters an old-fashioned URL in an application

associated with Tor

2. The derived descriptor ID is used to obtain the service de-

scriptor from selected ORs

3. The OP connects to the hidden service just like in the current

implementation

3.1.3 Generating a memorable URL to a hidden service

Both operator and visitor could generate a memorable URL to a hidden

service. Normally, the operator would do this after he generated the key

pair for the languages he cares about. After finding a pair generating an

appropriate word list, the resulting URL can be spread out-of-band.

Of course a visitor is free to generate another URL for an arbitrary hidden

service, for example if the operator did not care about the user’s native lan-

guage. A URL like example.fluid-area-above-movie-start.onion could

be “localized” to example.metall-gelb-frieden-helm-zeit.onion.

Of course there may be unpropitious adresses that don’t allow localiza-

tions into a specific language, because they contain at least one of the few

bit sequences that aren’t associated with any word in the local dictionary. In

the worst case the user would have to “loan” a foreign word from the original

address, possibly after adding it to the local dictionary.

23

Precondition: the public key of the hidden service in question is

known to the actor

Postcondition: a URL meeting the constraints explained above is

known to the actor

1. The actor chooses a handler

2. The actor generates a URL from his local dictionary, such

that all the constraints explained above are met

3.1.4 Setting up a new hidden service in the Tor network

Of course setting up a new hidden service has been implemented already.

We have to make the procedure more computationally intensive, however, to

mitigate brute-force attacks on memorable URLs. Also, we are amending the

possibility to prefix the word list by a handler and introduce the possibility

to recreate the keys in case the operator doesn’t like the generated word list.

Precondition: none

Postcondition: none

1. The operator configures a hidden service

2. The OP generates a private/public key pair

3. If the operator specified a handler in the configuration file,

generate a memorable URL for it

4. The operator has to either accept or reject the URL

5. If the operator is satisfied with the URL, the hidden service

is advertised on selected ORs just like in the current system

The use cases can be summarized in a diagram:

24

Call memorable URL

Set up hidden service

Call old-style URL

Generate
memorable URL Operator

Visitor «include»

Figure 11: The UML diagram summarizing the above use cases.

To outline the next steps: we are now going to implement memorable

URLs similar to the way suggested by Crowley [11]. The key difference is

that the public key is used as the nonce, whereas in the original essay it has

been a distinct object. Furthermore Mathewson’s idea (see appendix) is im-

plemented to make the dictionary optional and support different languages.

25

4 Implementation

Tor (or more precisely: its reference implementation) is mostly written in C.

The part of the source code we are interested in is to be found in the direc-

tory src/or/ (relative to the root of the Tor distribution). All statements

concerning file names below refer to that directory, unless noted otherwise.

The following descriptions have been deduced by reading the source code and

are prone to change in the future.

4.1 Current Implementation

First we will take a look at the parts of the current implementation that are

interesting for the problem at hand. We start our journey at the function

connection_ap_handshake_rewrite_and_attach in connection_edge.c,

as all clients calling an address will end up there. The function then decides

what type the address belongs to by calling parse_extended_hostname from

the same file. Possible types are:

ONION HOSTNAME if the address is of the form “y.onion”,

EXIT HOSTNAME if the address is of the form “y.exit”,

NORMAL HOSTNAME otherwise (i.e. it isn’t part of the Tor network).

Only the first type is of concern to us. Such an address would either

be looked up in the cache with rend_cache_lookup_entry or, failing that,

handed to rend_client_refetch_v2_renddesc in the file rendclient.c.

Here things start to get interesting, as this function performs the actual

lookup by calculating the descriptor ID with rend_compute_v2_desc_id and

fetching the associated data from appointed ORs in the network by calling

directory_get_from_hs_dir. The task of actually fetching the descriptor is

delegated to directory_initiate_command_routerstatus_rend in the file

directory.c. From there on things become too low-level to be of interest

to us.

We turn our attention to the file rendcommon.c instead, where another

function rend_cache_store_v2_desc_as_client is making sure that all of

26

the current constraints for service descriptors are met: the public key in the

descriptor has to be encodable to the entered URL, for example. The age is

also inspected; the descriptor must not have a time stamp too far in the past

(up to 24 hours) or in the future (up to 1 hour) as per the Tor Rendezvous

Specification [5].

The creation of URLs, on the other hand, is mostly done by the functions

defined in rendservice.c. After the configuration file has been parsed by

the functions defined in config.c, the function rend_config_service is

called. This function sets up a structure rend_service_t that contains the

properties of the hidden service.

In the function options_act in config.c, rend_service_load_keys is

called for each hidden service specified in the configuration file. That function

in turn generates a new key or loads an existing one from the file private_key

in the hidden service directory. The permanent ID is also generated there

and then written to the file hostname as a Onion URL.

That is all we need to know to add the new functionality to Tor.

4.2 Unit Tests

Instead of setting off to implement the feature immediately, unit tests have

been written at each step (where it makes sense) in an effort to reap the

benefits of test-driven development. Fortunately there already is a substantial

base of unit tests (to be found in src/test/) that acts as a helpful point of

orientation for newcomers.

After implementing the basic lookup functionality, however, additions

to the unit tests became rare, as most of the later work either depends on

interactive elements or a connection to the Tor network or requires individual

files to be present on the machine. The lack of automated testing had to be

made up by extensive and error-prone manual testing.

4.3 Basic Lookup Functionality

The basic lookup functionality consists of validating the entered URL, de-

coding it to a permanent ID and reencoding the permanent ID to an old-style

27

URL.

The first part has been achieved (after adding the relevant unit tests

to src/test/test.c, which won’t be mentioned from now on) by modify-

ing the function parse_extended_hostname to make it accept the new-style

Onion URLs. This required the introduction of a new function that has

been dubbed rend_valid_word_list_address as an analog to the already

existing function rend_valid_service_id that is called for old-style Onion

URLs.

It has been decided that the new-style URLs shall bear the suffix wl.onion.

That way we have a clear separation between the old and the new name

spaces. Furthermore the SLD wl (for “word list”) is interchangeable, should

future developments of Tor lead to yet another name system; should Naka-

names be implemented eventually, they could look like example.naka.onion.

The order of handle, word list, wl and onion was chosen to avoid confusion

amongst users accommodated to DNS. Changing the position of handle and

word list, for example, could lead to the fallacy that two different hidden

services with the same handle are under administrative control of a common

authority. Constraints of DNS have been implemented accordingly; there is

a limit for the maximal length of a label at 63 octets and another for the

whole domain name at 255 octets. The characters of words and handle are

required to be alphanumeric characters for the time being, even though there

isn’t any technical reason why they couldn’t be internationalized.

The next step was the introduction of rend_decode_word_list that de-

codes a word list in the manner described in the analysis above. This function

optionally takes a dictionary as an argument. If specified, the words in the

URL are searched for in this list. The returned data from the function is

then used as an Onion URL just like in the original implementation.

Tor stores the Onion URL in a structure struct rend_data_t. We sup-

plement it with the handle from the entered URL, because we will need it

later (see 4.5).

28

4.4 Creation of URLs

The first decision to make is how creation of a word list URL has to be com-

municated by a hidden service operator. As the handle is required with word

list URLs and it is senseless in the context of old-style URLs, it was decided

not to introduce a distinct option for word list URLs. The handle option

HiddenServiceHandle implicitly activates the creation of these addresses,

instead. As the new-style URLs are supposed to be complementing the old

addresses, old-style URLs are generated in any case and can be used just like

they were before.

Other options have been introduced too: ConsultDictionaryOnResolve,

GenerateWordListOnResolve as well as DictionaryFile. The first value is

a boolean that controls whether all the words in a word list URL are to be

confirmed to exist in the dictionary. This should protect against most URL

mimicry with (intentionally placed) typos. The second options is a boolean

value too. That way the user can control whether Tor shall generate (and

print) new word list addresses for each hidden service visited.

The option HiddenServiceHandle is local, it has to be specified for each

hidden service the operator wishes to generate a word list URL for. Gen-

erating such a URL or consulting the dictionary on resolve of course both

require DictionaryFile to be set. The other options are global.

They where easily added by inserting them into the array _option_vars

in the file config.c. The default values of ConsultDictionaryOnResolve

and GenerateWordListOnResolve are false, because loading the directory is

an expensive operation, as we will see.

We also wish to output the chance for a word list encoding to exist when

the dictionary has been loaded afresh. Basic probability calculus helps us

calculating the chances for 5 values (of two byte each) to match the begin-

nings of the SHA-1 hashes of any word in a set with n words in total. In other

words: given a random service ID, the probability for a word list encoding

to exist is

P (“word list encoding”) =
(n

216

)5

=
n5

280

29

This is much lower than perhaps assumed intuitively. Let us consider

a fairly complete dictionary with 88105 words, extracted from one of the

included dictionaries in GNU Aspell.9 These words are producing 48015

different two byte hashes. The probability for a word list encoding (with

5 words) to exist is now only 21.11 percent! The key stretching described

below lowers the probability for a usable encoding to exist even more.

As loading the dictionary file is the most resource intensive operation,

typically taking around two minutes, we want to avoid it whenever it is pos-

sible. A number of ideas have been implemented to help with this problem:

• The dictionary is only accessible through an interface that caches all

the words in the current dictionary.

• The actual loading is deferred for as long as possible. That way a user,

even if ConsultDictionaryOnResolve has been specified, doesn’t have

to load the dictionary, as long as no word list URLs are entered.

• When caching the dictionary, the words are stored in appropriate, effi-

cient data structures.

To check whether words are in the dictionary, we append all of them to

a list named dictlist. To generate a word list URL, on the other hand, we

only need the shortest words for each particular two byte value. Therefore

we used a digest map named dictmap, that is, a data structure that maps

the digests of words to the words themselves.

With both structures only the references to words are used, so there is

hardly any memory overhead despite seemingly duplicated storing. Care is

warranted when freeing data structures, however.

While the dictionary is loading, the Tor process is blocked. One could

avoid that by moving the loading part to another thread, but fortunately Tor

is robust enough to deal with the blocking typically seen in our use case. The

worst effect experienced was dropping of old circuits that had to be rebuilt.

When consulting the dictionary on resolving an address, we look up

the words in the URL in dictlist. Here we could reach a complexity of

9http://aspell.net/

30

O(log(n)) if we would sort the list prior use. On the other hand, the delay

for searching the words has not been noticeable in tests so far.

The function rend_encode_word_list is the counterpart to the decode

function presented before. One important difference is that the dictionary is

not optional here. Where should the words in the result come from, other-

wise? This is also the reason why ConsultDictionaryOnCreate is missing.

If the function returns successfully, we know we have an encoding and can

upload the service descriptor just like in the original implementation. If there

is no valid word list encoding, however, we have to generate a different public

key. The function init_key_from_file from the original implementation

has been modified for that reason, such that it overwrites an existing key file

on request.

We have to be careful here, as not to overwrite older key files by accident.

If Tor encounters a pre-existing key file in a hidden service directory, it will

always leave it alone. The operator has to delete the file by hand if a new

URL is desired. Similarly, Tor will only regenerate a URL if there is no

hostname file in the hidden service directory.

4.5 Key Stretching

Implementing the key stretching was rather straightforward. The function

rend_digest_ends_in_nuls is called both when generating and when re-

solving a URL. Its arguments are the handle, the public key’s digest and the

number of NUL-bytes the resulting digest has to end in for the function to

return true. As the third argument would typically be a single constant in

the program, one may wonder why it is specifiable here. We will soon see

the reason for this, but let us consider the problems first.

The one big disadvantage with this approach is that it is nearly impossible

to seamlessly increment the number of required zeroes after the system has

been deployed, as then all hidden services would have to regenerate their

public keys, thus changing their URLs (the word list part, at least).

On the other hand, what can be done? Preserving the public key would

require some other variable the hidden services can alter and upload to the

31

DHT, where a client could then download that variable and test whether the

key stretching took place. The only clean way to achieve this would be to

introduce a nonce (or a similar piece of data) and that in turn would require

a change of the rendezvous specification. We are back at Crowley’s original

idea now.

An alternative form of key stretching might buy us some time: we could

apply the hash function repeatedly (many thousand times) in a nested fashion

before checking for trailing zeroes. This would slow down both generation

and resolving of word list URLs. Unfortunately it would have exactly the

same problems as the current solution.

In the end a compromise has been implemented that hopefully makes a

transition to a more complex challenge a possibility, at least. Two different

constants for the number of required zeroes have been defined:

REND WORD LIST ACCEPT NNULS for the required zeroes if resolving a URL,

REND WORD LIST GENERATE NNULS for the required zeroes if creating a URL.

The former is supposed to be less or equal the latter. That way the Tor

developers can open a transition window for the hidden services by speci-

fying different values for these constants. That is the reason the function

rend_digest_ends_in_nuls takes the required number of zeroes, as it de-

pends on the context the function is called in.

Operators would generate a new URL for their hidden service in such a

case. Then they could advertise their new URL at the old addresses that

are still accepted by clients for the length of the transition window. By the

time the transition window is closed, hopefully all users know about the new

locations. While certainly an imperfect solution, it is probably the best we

can do without changing the rendezvous specification [5].

4.6 Evaluation

The result of the work described above is a patch of around 1000 lines of

code. The changes are as non-invasive as possible, for there are less chances

for things to go wrong. Faced with the choice between changing the content

32

of an existing array in-place or creating a working copy of it, the latter was

almost always the preferred way. It might be less efficient, but we can be

sure that existing facilities won’t get confused by our changes.

Much attention has been devoted to secure coding principles, for exam-

ple we always used OpenBSD ’s10 strlcpy and strlcat [19] instead of the

ANSI counterparts as well a Tor variants of other standard functions (e.g.

tor_strdup). The changed code compiles with GCC’s warnings enabled and

has been tested for memory leaks, double frees, and the like with Valgrind.11

Care has been taken to ensure that our modifications are portable across

a wide range of different operating systems and architectures. Tor should

run at least on Windows, Linux, Mac OS, BSD and Solaris. [10]

10http://www.openbsd.org/
11http://valgrind.org/

33

5 Conclusion

The solution presented in this thesis should make hidden services more ac-

cessible to a wider audience and furthermore have an everlasting, positive

impact on the security for psychological reasons. Word list addresses in their

current form are more secure even from a theoretical viewpoint than the

old-style addresses, thanks to key stretching. The problems begin with the

introduction of longer public keys at some point in the future.

As we have seen, future changes may bring an end to word list URLs. Un-

fortunately it turned out that addressing the issue won’t be possible without

changing at least the rendezvous specification [5] (and possibly the Tor spec-

ification too), as there is no satisfying way for a client to validate that the

required key stretching step took place at a hidden service. Using the public

key’s digest plus handle for this is a less-than-ideal solution. A future revi-

sion of the specification could include a nonce as envisioned in the original

essay, for example.

There are other proposals to ensure that proper efforts were invested in

creating a word-list URL. Some of the proposals [20] have the advantage that

they are memory-bound rather than CPU-bound. This is important because

the contrast between low and high end systems is much less daunting in this

regard. Ideally changes to the specification to include the required data in

the service descriptors should be made concurrently with the introduction of

longer keys.

Another limitation is the handling of the dictionary, albeit it is dealt

with much more easily than the previous issue. There has been nearly no

performance tuning on the loading process, other than a few basic design

decisions. We cannot go without loading the file one way or another, but

there is plenty of room for improvement. The dictionary could be loaded

in a separate thread while Tor is bootstrapping, for example. Another en-

hancement could be made by introducing a binary file that acts as a cache

between program starts.

Yet another remaining problem became evident while testing the basic

functionality with a web browser: some of the hidden services failed to re-

34

spond to our queries with the expected page. The explanation for this be-

haviour lies in the specification of HTTP 1.1 [21]. A browser has to submit

the hostname with each HTTP GET request, such that a web server with

virtual hosts knows which page to return. In our case the browser sends the

URL entered by the user whereas many hidden services are expecting the

old-style Onion URL.

Unfortunately none of the solutions to this problem are appealing. The

simplest solution would be to wait until the operators configure their web

servers to ignore the hostname sent in HTTP. That way the ability to host

multiple sites on a single server could be constricted. On the other hand

this is arguably a bad idea to begin with, since an attacker could identify

all websites by subverting a single server. The other problem is that the

operators are able to see which URL a visitor used in a request. They could

take advantage of this information to partition their visitors.

The alternative solution would be to include a mechanism so that the

browser encodes the entered URL to an old-style URL before sending it. This

would be a substantial duplication of the work done in Tor itself. Moving

the whole functionality to the browser is unacceptable either, as we would

lose it in other (non-web) applications then.

35

A Nick Mathewsons Email

Thanks to Nick Mathewson for allowing me to publish this private mail:

On Mon, Feb 21, 2011 at 9:10 PM, Simon Nicolussi

<Simon.Nicolussi@student.uibk.ac.at> wrote:

[...]

> Paul Crowley used a list from Diceware without any words that contained

> special symbols (http://world.std.com/~reinhold/diceware.wordlist.asc).

> I’m not sure about _this_ list, but I’m pretty confident that there are

> enough distinct words in English to make a list that easily matches our

> requirements. Given enough distinct words, one could even build 5-word

> sentences instead of simple lists. This would enhance the memorability

> of the URLs even more.

If we wanted, we could make the wordlist optional on the client side

and have it be required only on the hidden service side. The trick is

to define the client-side name->bits mapping for a human-readable name

as something like:

"subname1.subname2....subnameN" ->

H(subname1)[:nb] | H(subname2)[:nb] | ... | H(subnameN)[:nb]

where H is a hash function, x[:nb] is the first nb bits of x, and | is

concatenation.

For nb == 16, this means we need 5 words per 80-bit key, 10 per

160-bit key (if we go there in the future) and 16 per 256-bit key (if

we go _there_ in the future). Note that since the hash function _is_

the word mapping, we don’t actually need a fixed word list on

client-side, and servers can use whatever word lists they want. That

could be advantageous if we want to allow different languages!

But this scheme depends on us having enough words so that, for any

nb-bit sequence, we have a tolerable word whose hash starts with that

sequence. Are there enough words in English for that? I’ll leave the

combinatorics for your thesis and instead attach a trivial python

script that finds the shortest word in /usr/share/dict/words such that

the first 2 bytes of SHA1(w) is x for all two-byte x. On my desktop’s

English dictionary, it gets hits for 65465/65536 possible 16-bit

sequences: over 98% of all 256-bit keys are representable with 16

words. [If you generated a key that fell in the bad 2%, you could

36

just generate a new one.]

For example, the key in your original message could become:

"woodwose.temin.gerate.ungagged.swosh.onion" or

"callean.usss.gerate.deniers.current.onion" or even

"hair-raising.flippant.rontgens.deniers.nonspheral.onion"

Is this approach a win? Some advantages here are:

* we don’t need to ship a wordlist for clients

* we can support all languages, not just English.

* It falls back reasonably well on the old compact names.

Some disadvantages are:

* It’s not certain that you’ll find an encoding for an arbitrary string.

* The words are less likely to be common ones.

* There can be more than one encoding for a given string.

wordhash.py

import sha
import b i n a s c i i
import re

def z (words) :
d = {}
for w in words :

w = w. s t r i p () . lower ()
i f not re . match (r ’ ˆ [a−z0−9\−]∗$ ’ , w) : continue
s = sha . sha (w) . d i g e s t () [: 2]
i f d . has key (s) :

i f l en (d [s]) > l en (w) :
d [s] = w
#pr in t ”%r −> %s”%(s ,w)

else :
d [s] = w
#pr in t ”%r −> %s”%(s ,w)

return d

for s ,w in so r t ed (z (open (”/ usr / share / d i c t /words” , ’ r ’)) . i tems ()) :
print b i n a s c i i . b2a hex (s) , w

37

References

[1] R. Dingledine and N. Mathewson, “Anonymity Loves Company: Usua-

bility and the Network Effekt,” in Proceedings of WEIS 2006, June 2006.

[2] P. Mockapetris, “Domain Names - Concepts and Facilities.” available at

http://tools.ietf.org/html/rfc1034, November 1987.

[3] E. Davies, C. Sullivan, J. Richardson, E. Rivera, T. Flanelly, and J. Mar-

golin, “Manhattan U.S. attorney charges principals of three largest In-

ternet poker companies with bank fraud, illegal gambling offenses and

laundering billions in illegal gambling proceeds,” April 2011.

[4] J. S. Bourne, “What it Means When U.S. Law Enforcement ”Seizes” a

Domain Name.” available at http://www.domainnamestrategy.com/

2011/04/21/vocabulary-lesson-what-it-means-when-us-law-

enforcement-seizes-domain-name, April 2011.

[5] R. Ransom, R. Dingledine, N. Mathewson, K. Loesing, S. Hahn,

and A. Lewman, “Tor Rendezvous Specification.” available at

https://gitweb.torproject.org/torspec.git?a=blob plain;hb=

HEAD;f=rend-spec.txt, June 2011.

[6] Z. Wilcox-O’Hearn, “Names: Decentralized, Secure, Human-

Meaningful: Choose Two.” available at http://www.zooko.com/

distnames.html, September 2003.

[7] C. Shirky, “Domain Names: Memorable, Global, Non-political?.” avail-

able at http://shirky.com/writings/domain names.html, May 2002.

[8] M. Stiegler, “An Introduction to Petname Systems.” available at http:

//www.skyhunter.com/marcs/petnames/IntroPetNames.html, June

2010.

[9] J. Oikarinen and D. Reed, “Internet Relay Chat Protocol.” available at

http://tools.ietf.org/html/rfc1459, May 1993.

38

[10] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-

Generation Onion Router,” in Proceedings of the 13th USENIX Security

Symposium, August 2004.

[11] P. Crowley, “Squaring Zooko’s triangle.” available at http:

//www.lshift.net/blog/2007/11/10/squaring-zookos-triangle

and http://www.lshift.net/blog/2007/11/21/squaring-zookos-

triangle-part-two, November 2007.

[12] N. Mathewson, “The Tor Proposal Process.” available at

https://gitweb.torproject.org/torspec.git?a=blob plain;

hb=HEAD;f=proposals/001-process.txt, January 2007.

[13] N. Mathewson, “Initial thoughts on migrating Tor to new cryptog-

raphy.” available at https://gitweb.torproject.org/torspec.git/

blob/HEAD:/proposals/ideas/xxx-crypto-migration.txt, Decem-

ber 2010.

[14] K. Rieck, “Fuzzy Fingerprints, Attacking Vulnerabilities in the Human

Brain.” available at http://freeworld.thc.org/papers/ffp.pdf, Oc-

tober 2003.

[15] A. Swartz, “Squaring the Triangle: Secure, Decentralized, Human-

Readable Names.” available at http://www.aaronsw.com/weblog/

squarezooko, January 2011.

[16] A. Swartz, “Frequently Asked Questions.” available at https://

squaretriangle.jottit.com/faq, January 2011.

[17] D. Kaminsky, “Spelunking the Triangle: Exploring Aaron Swartz’s Take

On Zooko’s Triangle.” available at http://dankaminsky.com/2011/01/

13/spelunk-tri/, January 2011.

[18] M. Perry, “To Toggle, or not to Toggle: The End of Torbut-

ton.” available at https://blog.torproject.org/blog/toggle-or-

not-toggle-end-torbutton, May 2011.

39

[19] T. C. Miller and T. de Raadt, “strlcpy and strlcat - Consistent, Safe

String Copy and Concatenation,” in Proceedings of the FREENIX Track:

1999 USENIX Annual Technical Conference, June 1999.

[20] M. Abadi, M. Burrows, M. Manasse, and T. Wobber, “Moderately Hard,

Memory-bound Functions,” ACM Transactions on Internet Technology,

vol. 5, p. 299 to 327, May 2005.

[21] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, “Hypertext Transfer Protocol - HTTP/1.1.” available

at http://tools.ietf.org/html/rfc2616, June 1999.

40

